Homotopy analysis method for option pricing under stochastic volatility
نویسندگان
چکیده
منابع مشابه
Option Pricing under Ornstein-uhlenbeck Stochastic Volatility
We consider the problem of option pricing under stochastic volatility models, focusing on the two processes known as exponential Ornstein-Uhlenbeck and Stein-Stein. We show they admit the same limit dynamics in the regime of low fluctuations of the volatility process, under which we derive the expressions of the characteristic function and the first four cumulants for the risk neutral probabili...
متن کاملA new approach for option pricing under stochastic volatility
We develop a new approach for pricing European-style contingent claims written on the time T spot price of an underlying asset whose volatility is stochastic. Like most of the stochastic volatility literature, we assume continuous dynamics for the price of the underlying asset. In contrast to most of the stochastic volatility literature, we do not directly model the dynamics of the instantaneou...
متن کاملMC/QMC Methods for Option Pricing under Stochastic Volatility Models
In the context of multi-factor stochastic volatility models, which contain the widely used Heston model, we present variance reduction techniques to price European options by Monte Carlo (MC) and QuasiMonte Carlo (QMC) methods. We formulate a stochastic integral as a martingale control for the payoffs to be evaluated. That control corresponds to the cost of an approximate delta hedging strategy...
متن کاملOption pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کاملOption Pricing under Hybrid Stochastic and Local Volatility
This paper deals with an option pricing model which can be thought of as a hybrid stochastic and local volatility model. This model is built on the local volatility term of the well-known constant elasticity of variance (CEV) model multiplied by a stochastic volatility term driven by a fast mean-reverting Ornstein-Uhlenbeck process. An asymptotic formula for European option price is derived to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2011
ISSN: 0893-9659
DOI: 10.1016/j.aml.2011.04.034